{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Anscombe's quartet\n",
"\n",
"[further info here](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x1 | \n",
" y1 | \n",
" x2 | \n",
" y2 | \n",
" x3 | \n",
" y3 | \n",
" x4 | \n",
" y4 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 10 | \n",
" 8.04 | \n",
" 10 | \n",
" 9.14 | \n",
" 10 | \n",
" 7.46 | \n",
" 8 | \n",
" 6.58 | \n",
"
\n",
" \n",
" 1 | \n",
" 8 | \n",
" 6.95 | \n",
" 8 | \n",
" 8.14 | \n",
" 8 | \n",
" 6.77 | \n",
" 8 | \n",
" 5.76 | \n",
"
\n",
" \n",
" 2 | \n",
" 13 | \n",
" 7.58 | \n",
" 13 | \n",
" 8.74 | \n",
" 13 | \n",
" 12.74 | \n",
" 8 | \n",
" 7.71 | \n",
"
\n",
" \n",
" 3 | \n",
" 9 | \n",
" 8.81 | \n",
" 9 | \n",
" 8.77 | \n",
" 9 | \n",
" 7.11 | \n",
" 8 | \n",
" 8.84 | \n",
"
\n",
" \n",
" 4 | \n",
" 11 | \n",
" 8.33 | \n",
" 11 | \n",
" 9.26 | \n",
" 11 | \n",
" 7.81 | \n",
" 8 | \n",
" 8.47 | \n",
"
\n",
" \n",
" 5 | \n",
" 14 | \n",
" 9.96 | \n",
" 14 | \n",
" 8.10 | \n",
" 14 | \n",
" 8.84 | \n",
" 8 | \n",
" 7.04 | \n",
"
\n",
" \n",
" 6 | \n",
" 6 | \n",
" 7.24 | \n",
" 6 | \n",
" 6.13 | \n",
" 6 | \n",
" 6.08 | \n",
" 8 | \n",
" 5.25 | \n",
"
\n",
" \n",
" 7 | \n",
" 4 | \n",
" 4.26 | \n",
" 4 | \n",
" 3.10 | \n",
" 4 | \n",
" 5.39 | \n",
" 19 | \n",
" 12.50 | \n",
"
\n",
" \n",
" 8 | \n",
" 12 | \n",
" 10.84 | \n",
" 12 | \n",
" 9.13 | \n",
" 12 | \n",
" 8.15 | \n",
" 8 | \n",
" 5.56 | \n",
"
\n",
" \n",
" 9 | \n",
" 7 | \n",
" 4.82 | \n",
" 7 | \n",
" 7.26 | \n",
" 7 | \n",
" 6.42 | \n",
" 8 | \n",
" 7.91 | \n",
"
\n",
" \n",
" 10 | \n",
" 5 | \n",
" 5.68 | \n",
" 5 | \n",
" 4.74 | \n",
" 5 | \n",
" 5.73 | \n",
" 8 | \n",
" 6.89 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x1 y1 x2 y2 x3 y3 x4 y4\n",
"0 10 8.04 10 9.14 10 7.46 8 6.58\n",
"1 8 6.95 8 8.14 8 6.77 8 5.76\n",
"2 13 7.58 13 8.74 13 12.74 8 7.71\n",
"3 9 8.81 9 8.77 9 7.11 8 8.84\n",
"4 11 8.33 11 9.26 11 7.81 8 8.47\n",
"5 14 9.96 14 8.10 14 8.84 8 7.04\n",
"6 6 7.24 6 6.13 6 6.08 8 5.25\n",
"7 4 4.26 4 3.10 4 5.39 19 12.50\n",
"8 12 10.84 12 9.13 12 8.15 8 5.56\n",
"9 7 4.82 7 7.26 7 6.42 8 7.91\n",
"10 5 5.68 5 4.74 5 5.73 8 6.89"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"#matplotlib inline\n",
"\n",
"df = pd.read_csv('../data/anscombe.csv')\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x1 | \n",
" y1 | \n",
" x2 | \n",
" y2 | \n",
" x3 | \n",
" y3 | \n",
" x4 | \n",
" y4 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
" 11.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 9.000000 | \n",
" 7.500909 | \n",
" 9.000000 | \n",
" 7.500909 | \n",
" 9.000000 | \n",
" 7.500000 | \n",
" 9.000000 | \n",
" 7.500909 | \n",
"
\n",
" \n",
" std | \n",
" 3.316625 | \n",
" 2.031568 | \n",
" 3.316625 | \n",
" 2.031657 | \n",
" 3.316625 | \n",
" 2.030424 | \n",
" 3.316625 | \n",
" 2.030579 | \n",
"
\n",
" \n",
" min | \n",
" 4.000000 | \n",
" 4.260000 | \n",
" 4.000000 | \n",
" 3.100000 | \n",
" 4.000000 | \n",
" 5.390000 | \n",
" 8.000000 | \n",
" 5.250000 | \n",
"
\n",
" \n",
" 25% | \n",
" 6.500000 | \n",
" 6.315000 | \n",
" 6.500000 | \n",
" 6.695000 | \n",
" 6.500000 | \n",
" 6.250000 | \n",
" 8.000000 | \n",
" 6.170000 | \n",
"
\n",
" \n",
" 50% | \n",
" 9.000000 | \n",
" 7.580000 | \n",
" 9.000000 | \n",
" 8.140000 | \n",
" 9.000000 | \n",
" 7.110000 | \n",
" 8.000000 | \n",
" 7.040000 | \n",
"
\n",
" \n",
" 75% | \n",
" 11.500000 | \n",
" 8.570000 | \n",
" 11.500000 | \n",
" 8.950000 | \n",
" 11.500000 | \n",
" 7.980000 | \n",
" 8.000000 | \n",
" 8.190000 | \n",
"
\n",
" \n",
" max | \n",
" 14.000000 | \n",
" 10.840000 | \n",
" 14.000000 | \n",
" 9.260000 | \n",
" 14.000000 | \n",
" 12.740000 | \n",
" 19.000000 | \n",
" 12.500000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x1 y1 x2 y2 x3 y3 \\\n",
"count 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000 \n",
"mean 9.000000 7.500909 9.000000 7.500909 9.000000 7.500000 \n",
"std 3.316625 2.031568 3.316625 2.031657 3.316625 2.030424 \n",
"min 4.000000 4.260000 4.000000 3.100000 4.000000 5.390000 \n",
"25% 6.500000 6.315000 6.500000 6.695000 6.500000 6.250000 \n",
"50% 9.000000 7.580000 9.000000 8.140000 9.000000 7.110000 \n",
"75% 11.500000 8.570000 11.500000 8.950000 11.500000 7.980000 \n",
"max 14.000000 10.840000 14.000000 9.260000 14.000000 12.740000 \n",
"\n",
" x4 y4 \n",
"count 11.000000 11.000000 \n",
"mean 9.000000 7.500909 \n",
"std 3.316625 2.030579 \n",
"min 8.000000 5.250000 \n",
"25% 8.000000 6.170000 \n",
"50% 8.000000 7.040000 \n",
"75% 8.000000 8.190000 \n",
"max 19.000000 12.500000 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x1, y1: 0.81642051634484\n",
"x2, y2: 0.8162365060002428\n",
"x3, y3: 0.8162867394895984\n",
"x4, y4: 0.8165214368885028\n"
]
}
],
"source": [
"for i in range(1, 5):\n",
" correlation = df[f'x{i}'].corr(df[f'y{i}'])\n",
" print(f'x{i}, y{i}: {correlation}')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARy0lEQVR4nO3df2zcd33H8dfrfLriGCOMczU/zBZAlZlWDahuiC6iYnSdCqvagYYEGkthXfJHGDAkxg+xgTZtCAbSQJrElJTSRpTuR0ZEt2mlVSfoHwPEtfwKlKwag+JQkqsxyHNMD/ve+8NnK3Ht2LHvvh/f9/N8SNHZ37v48/qq6SuXz/fz/ZwjQgCAfFRSBwAAFIviB4DMUPwAkBmKHwAyQ/EDQGaqqQNsxd69e2Pfvn2pYwDAQHnwwQcfj4j62uMDUfz79u1Ts9lMHQMABortH6x3nKkeAMhM34rf9m22z9o+ed6x19n+tu2O7Ua/xgYAbKyf7/hvl3T9mmMnJb1W0gN9HBcAcBF9m+OPiAds71tz7GFJst2vYQEAm9i1c/y2D9lu2m62Wq3UcQCgNHZt8UfEkYhoRESjXn/SaiQAwDYNxHJOAPnqdEIz8221F5dUqw5pfKSmSoXp4p2g+AHsWp1O6NSZOR081tT07IImx4Z19EBDUxOjlP8O9HM5512SviRpyva07Vtsv8b2tKSrJf277c/3a3wAg29mvr1a+pI0Pbugg8eamplvJ0422Pq5qucNGzx1ol9jAiiX9uLSaumvmJ5dUHtxKVGicti1F3cBoFYd0uTY8AXHJseGVasOJUpUDhQ/gF1rfKSmowcaq+W/Msc/PlJLnGywcXEXwK5VqVhTE6M6cXg/q3p6iOIHsKtVKlZ99LLUMUqFqR4AyAzFDwCZofgBIDMUPwBkhuIHgMxQ/ACQGYofADJD8QNAZih+AMgMxQ8AmaH4ASAzFD8AZIbiB4DMUPwAkBmKHwAyQ/EDQGYofgDITN+K3/Ztts/aPnnesWfYvs/2I93HsX6NDwBYXz/f8d8u6fo1x94j6f6IuELS/d3vAQDn6XRCrbkndHr2nFpzT6jTiZ7+/L595m5EPGB735rDN0l6RffrOyR9QdK7+5UBAAZNpxM6dWZOB481NT27oMmxYR090NDUxGjPPmS+6Dn+iYh4TJK6j5dv9ELbh2w3bTdbrVZhAQEgpZn59mrpS9L07IIOHmtqZr7dszF27cXdiDgSEY2IaNTr9dRxAKAQ7cWl1dJfMT27oPbiUs/GKLr4z9h+liR1H88WPD4A7Gq16pAmx4YvODY5NqxadahnYxRd/HdLurn79c2SPlfw+ACwq42P1HT0QGO1/Ffm+MdHaj0bo28Xd23fpeULuXttT0v6gKQPSfon27dIelTS6/o1PgAMokrFmpoY1YnD+9VeXFKtOqTxkVrPLuxK/V3V84YNnrq2X2MCQBlUKlZ99LL+/fy+/WQAwK5E8QNAZih+AMgMxQ8AmaH4ASAzFD8AZIbiB4DMUPwAkBmKHwAyQ/EDQGYofgDIDMUPAJmh+AEgMxQ/AGSG4geAzFD8AJAZih8AMkPxA0BmKH4AyAzFDwCZofgBIDNJit/2222ftP1t23+SIgMA5Krw4rd9paSDkl4q6UWSbrB9RdE5ACBXKd7x/4qkL0fEuYhYlPRFSa9JkAMAspSi+E9Kusb2uO09kl4t6blrX2T7kO2m7War1So8JACUVeHFHxEPS/qwpPsk3SPpG5IW13ndkYhoRESjXq8XnBIAyivJxd2I+GREXBUR10j6iaRHUuQAtqvTCbXmntDp2XNqzT2hTidSRwK2rJpiUNuXR8RZ278k6bWSrk6RA9iOTid06sycDh5ranp2QZNjwzp6oKGpiVFVKk4dD9hUqnX8/2L7O5L+VdJbImI2UQ7gks3Mt1dLX5KmZxd08FhTM/PtxMmArUnyjj8iXp5iXKAX2otLq6W/Ynp2Qe3FpUSJgEvDnbvAJapVhzQ5NnzBscmxYdWqQ4kSAZeG4gcu0fhITUcPNFbLf2WOf3ykljgZsDVJpnqAQVapWFMTozpxeL/ai0uqVYc0PlLjwi4GBsUPbEOlYtVHL0sdA9gWpnoAIDMUPwBkhuIHgMxQ/ACQGYofADJD8QNAZih+AMgM6/gBbEmnE5qZb3PTWglQ/AA2xVbU5cJUD4BNsRV1uVD8ADbFVtTlQvED2BRbUZcLxQ9gU2xFXS5c3AWwKbaiLheKH8CWsBV1eVD8wIBhPT12Kknx236HpD+SFJK+JenNEfHzFFmAQcJ6evRC4Rd3bT9H0tskNSLiSklDkl5fdA5gELGeHr2QalVPVdKw7aqkPZJ+lCgHMFBYT49eKLz4I+K0pI9KelTSY5J+FhH3Fp0DGESsp0cvpJjqGZN0k6TnSXq2pBHbb1zndYdsN203W61W0TGBXYn19OgFR0SxA9qvk3R9RNzS/f6ApJdFxOGNfk+j0Yhms1lURGBXY1UPtsr2gxHRWHs8xaqeRyW9zPYeSQuSrpVEqwNbxHp67FSKOf6vSDou6SEtL+WsSDpSdA4AyFWSdfwR8QFJH0gxNgDkjk3aACAzFD8AZIbiB4DMUPwAkBl25wSADZT1noltFb/t6yLivl6HAYDdosw7oW53queTPU0BALtMmXdC3fAdv+27N3pK0nh/4gDA7lDmnVAvNtXzcklvlPR/a45b0kv7lggAdoGVnVDPL/+y7IR6seL/sqRzEfHFtU/YPtW/SACQ3spOqGvn+MuwE+qmu3Pa/mNJd0bEbDGRnozdOQGkMOirenayO+czJX3V9kOSbpP0+Sh6L2cASKCsO6FuuqonIv5M0hVaXsnzJkmP2P6g7Rf0ORsAoA+2tJyz+w7/x91fi5LGJB23/Td9zAYA6INNp3psv03SzZIel3SrpD+NiF/Yrkh6RNK7+hsRWzXo85EAirGVOf69kl4bET84/2BEdGzf0J9YuFRlvssQQG9tZY7//WtL/7znHu59JGxHme8yBNBb7M5ZEmW+yxBAb1H8JbFyl+H5ynKXIYDeovhLYuUuw5XyL9NdhgB6i/34S6JSsaYmRnXi8H5W9QC4qMKL3/aUpH8879DzJb0/Ij5WdJayKetdhgB6q/Dij4hTkl4sSbaHJJ2WdKLoHACQq9RTPddK+p+NlosCm+GmNeDSpS7+10u6K3EGDChuWgO2J9mqHts1STdK+ucNnj9ku2m72Wq1ig2HgcBNa8D2pFzO+SpJD0XEmfWejIgjEdGIiEa9Xi84GgYBN60B25Oy+N8gpnmwA9y0BmxPkuK3vUfSdZI+m2J8lAM3rQHbk+TibkSckzSeYmyUBzetAduTelUPsCPctAZcOvbqAYDMUPwAkBmKHwAyQ/EDQGYofgDIDMUPAJmh+AEgMxQ/AGSG4geAzFD8AJAZih8AMkPxA0BmKH4AyAzFDwCZofgBIDMUPwBkhuIHgMxQ/ACQGYofADJD8QNAZpIUv+2n2z5u+7u2H7Z9dYocAJCjaqJxPy7pnoj4Pds1SXsS5QCA7BRe/LafJukaSW+SpIhoS2oXnQMAcpViquf5klqSPmX7a7ZvtT2y9kW2D9lu2m62Wq3iUwJASaUo/qqkqyR9IiJeImle0nvWvigijkREIyIa9Xq96IwAUFopin9a0nREfKX7/XEt/0UAAChA4cUfET+W9EPbU91D10r6TtE5ACBXqVb1vFXSnd0VPd+T9OZEOQAgO0mKPyK+LqmRYmwAyB137gJAZlJN9ZRapxOamW+rvbikWnVI4yM1VSpOHQsAJFH8PdfphE6dmdPBY01Nzy5ocmxYRw80NDUxSvkD2BWY6umxmfn2aulL0vTsgg4ea2pmnpuTAewOFH+PtReXVkt/xfTsgtqLS4kSAcCFKP4eq1WHNDk2fMGxybFh1apDiRIBwIUo/h4bH6np6IHGavmvzPGPj9QSJwOAZVzc7bFKxZqaGNWJw/tZ1QNgV6L4+6BSseqjl6WOAQDrYqoHADJD8QNAZih+AMgMxQ8AmaH4ASAzFD8AZIbiB4DMUPwAkBmKHwAyQ/EDQGYofgDIDMUPAJlJskmb7e9LmpO0JGkxIhopcgBAjlLuzvmbEfF4wvEBIEtM9QBAZlIVf0i61/aDtg+t9wLbh2w3bTdbrVbB8QCgvFIV//6IuErSqyS9xfY1a18QEUciohERjXq9XnxCACipJMUfET/qPp6VdELSS1PkAIAcFV78tkdsj658Lem3JZ0sOgd6q9MJteae0OnZc2rNPaFOJ1JHArCBFKt6JiSdsL0y/mci4p4EOdAjnU7o1Jk5HTzW1PTsgibHhnX0QENTE6N8yDywCxX+jj8ivhcRL+r++tWI+OuiM6C3Zubbq6UvSdOzCzp4rKmZ+XbiZADWw3JO7Fh7cWm19FdMzy6ovbiUKBGAi6H4sWO16pAmx4YvODY5NqxadShRIgAXQ/Fjx8ZHajp6oLFa/itz/OMjtcTJAKwn5ZYNKIlKxZqaGNWJw/vVXlxSrTqk8ZEaF3aBXYriR09UKlZ99LLUMQBsAVM9AJAZih8AMkPxA0BmKH4AyAzFDwCZofgBIDMUPwBkhuIHgMyU9gauTic0M9/mTlIAWKOUxc/+8ACwsVJO9bA/PABsrJTFz/7wALCxUhY/+8MDwMZKWfzsDw8AGyvlxV32hweAjZWy+CX2hweAjSSb6rE9ZPtrtv8tVQYAyFHKOf63S3o44fgAkKUkxW97UtLvSLo1xfgAkLNU7/g/JuldkjobvcD2IdtN281Wq1VcMgAoucKL3/YNks5GxIMXe11EHImIRkQ06vV6QekAoPxSvOPfL+lG29+X9A+SXmn70wlyAECWHBHpBrdfIemdEXHDJq9rSfrBNofZK+nxbf7eQcU55yG3c87tfKWdn/MvR8STpkwGYh3/esG3ynYzIhq9zLPbcc55yO2ccztfqX/nnLT4I+ILkr6QMgMA5KaUe/UAADaWQ/EfSR0gAc45D7mdc27nK/XpnJNe3AUAFC+Hd/wAgPNQ/ACQmdIXf267gNp+uu3jtr9r+2HbV6fO1E+232H727ZP2r7L9lNSZ+oH27fZPmv75HnHnmH7PtuPdB/HUmbspQ3O9yPdP9fftH3C9tNTZuy19c75vOfeaTts7+3FWKUvfuW3C+jHJd0TES+U9CKV+NxtP0fS2yQ1IuJKSUOSXp82Vd/cLun6NcfeI+n+iLhC0v3d78vidj35fO+TdGVE/Jqk/5b03qJD9dntevI5y/ZzJV0n6dFeDVTq4s9tF1DbT5N0jaRPSlJEtCPip2lT9V1V0rDtqqQ9kn6UOE9fRMQDkn6y5vBNku7ofn2HpN8tNFQfrXe+EXFvRCx2v/2ypMnCg/XRBv+NJelvtbypZc9W4pS6+LWFXUBL5vmSWpI+1Z3eutX2SOpQ/RIRpyV9VMvvhB6T9LOIuDdtqkJNRMRjktR9vDxxniL9oaT/SB2i32zfKOl0RHyjlz+3tMW/1V1AS6Yq6SpJn4iIl0iaV7n++X+B7pz2TZKeJ+nZkkZsvzFtKvSb7fdJWpR0Z+os/WR7j6T3SXp/r392aYtfee4COi1pOiK+0v3+uJb/Iiir35L0vxHRiohfSPqspN9InKlIZ2w/S5K6j2cT5+k72zdLukHS70f5b0J6gZbf1Hyj22OTkh6y/cyd/uDSFn9EvDciJiNin5Yv+P1nRJT63WBE/FjSD21PdQ9dK+k7CSP126OSXmZ7j21r+XxLezF7HXdLurn79c2SPpcwS9/Zvl7SuyXdGBHnUufpt4j4VkRcHhH7uj02Lemq7v/nO1La4s/YWyXdafubkl4s6YOJ8/RN9182xyU9JOlbWv7zXMrb+m3fJelLkqZsT9u+RdKHJF1n+xEtr/r4UMqMvbTB+f6dpFFJ99n+uu2/TxqyxzY45/6MVf5/LQEAzsc7fgDIDMUPAJmh+AEgMxQ/AGSG4geAzFD8wA7Zvsf2T3PZARaDj+IHdu4jkv4gdQhgqyh+YIts/3p3L/in2B7pfg7AlRFxv6S51PmAraqmDgAMioj4qu27Jf2VpGFJn46IJ31oBrDbUfzApflLSV+V9HMtfwgMMHCY6gEuzTMkPVXLe8aU8mMeUX4UP3Bpjkj6cy3vBf/hxFmAbWGqB9gi2wckLUbEZ2wPSfov26+U9BeSXijpqbanJd0SEZ9PmRW4GHbnBIDMMNUDAJmh+AEgMxQ/AGSG4geAzFD8AJAZih8AMkPxA0Bm/h9h6c1O/zRk3gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR6ElEQVR4nO3df2zcd33H8ef77F3rekYY14SClwUYCxsVLd2BgGiVoDDKqNqBtK3TUMrYEmllUJg2BoOBJm0MNqSBxGBKyigZpQgK0RjTqlawahLjl1Pa0tJ20YAWtzR1gzcy16tr+70/fHacxE7d5L73tT/3fEiR7bvzvd+fNnnd5z7f732+kZlIksrTqLsBSVI1DHhJKpQBL0mFMuAlqVAGvCQVqr/uBlY6++yzc9u2bXW3IUmbxoEDBx7OzNHV7ttQAb9t2zbGx8frbkOSNo2IuHet+1yikaRCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYXaUKdJSqrfwkJyeHqW2bl5mv19jAw2aTSi7rZ0Cgx4ScsWFpJ7Dh1h175xJqZmGBseYO/OFtu3DBnym5BLNJKWHZ6eXQ53gImpGXbtG+fw9GzNnelUGPCSls3OzS+H+5KJqRlm5+Zr6kinwyUaaQOqax282d/H2PDAMSE/NjxAs7+v8tqu/XeeAS9tMHWug48MNtm7s3VC7ZHBZqV1XfuvRmyka7K2Wq10szH1uskjj/Laj371hFn0/it3MDp0RuX165hJ1z3mzSwiDmRma7X7nMFLG0zd6+CNRnQ9VOsec6kqPcgaEVdFxB0RcWdEvLXKWlIpltbBV+rWOnhdenHM3VBZwEfEucAu4EXAecAlEfGcqupJpVhaB18KvG6tg9epF8fcDZWtwUfErwOvyszfa//8Z8CjmfnXa/2Oa/DSol48o6QXx9wJda3B3wH8ZUSMADPArwInpHdE7AZ2A2zdurXCdqTNo4518Lr14pirVtkSTWbeBXwAuAm4AbgNmFvlcXsys5WZrdHRVS8rKEk6BZUeZM3Mj2fmBZl5IfBj4GCV9SRJR1V6mmREPDUzH4qIrcDrgJdUWU+SdFTV58F/vr0G/xjwpsycqrie1FEe+NNmVmnAZ+YvV/n8UpX8+HxvKPlF3N0kpTW4dW75ll7EX/vRr7LjA//Gaz/6Ve45dISFhY2zhcvpMOClNfjx+fKV/iJuwEtr8OPz5Sv9RdyAl9bgx+fLV/qLuNsFSydR8gE4lXEg3e2CpVPkx+fL1mgE27cMsf/KHUW+iBvwknpayS/irsFLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1KhDHhJKpQBL0mFci8abQru6ig9cQa8NrwStnSV6uASjTa80i+rpt61sJBMHnmU+6ceYfLIox2/FqwzeG14pV9WTb2pG+9MncFrwyv9smrqTd14Z1ppwEfE2yLizoi4IyKui4gzq6ynMnltVJWoG+9MK1uiiYhnAG8BfjEzZyLis8DlwDVV1VSZSr+smnrT0jvTlSHf6XemVS/R9AMDEdEPnAU8UHE9FWrpsmrPGD6L0aEzDHdtet14Z1rZDD4z74+IDwL3ATPAjZl54/GPi4jdwG6ArVu3VtWOJG0o3XhnWtkMPiKGgcuAZwJPBwYj4vXHPy4z92RmKzNbo6OjVbUjSRtO1e9Mq1yieQXw/cyczMzHgC8AL62wniRphSoD/j7gxRFxVkQEcBFwV4X1JEkrVBbwmfkN4HrgFuA77Vp7qqonSTpWpZ9kzcz3Au+tsoYkaXV+klWSCmXAS1KhDHhJKpQBL0mFMuAlqVAGvCQVyoCXpEIZ8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCVbofvMqysJAcnp6t7ALBkjrLgNe6LCwk9xw6wq5940xMzTA2PMDenS22bxky5KUNyiUarcvh6dnlcAeYmJph175xDk/P1tyZpLUY8FqX2bn55XBfMjE1w+zcfE0dSXo8BrzWpdnfx9jwwDG3jQ0P0Ozvq6kjSY/HgNe6jAw22buztRzyS2vwI4PNmjuTtBYPsmpdGo1g+5Yh9l+5w7NopE3CgNe6NRrB6NAZdbchaZ0qW6KJiO0RceuKPz+JiLdWVU+SdKzKZvCZeQ9wPkBE9AH3A/urqidJOla3DrJeBPxXZt7bpXqS1PO6FfCXA9etdkdE7I6I8YgYn5yc7FI7klS+ygM+IprApcDnVrs/M/dkZiszW6Ojo1W3I0k9oxsz+FcDt2TmoS7UkiS1dSPgf4s1lmckSdWpNOAj4izglcAXqqwjSTpRpR90ysxHgJEqa0iSVudeNJJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklSokwZ8RDwpIp69yu3Pr64lSVInrBnwEfEbwN3A5yPizoh44Yq7r6m6MUnS6TnZDP5PgV/KzPOB3wH+MSJe174vKu9Ma1pYSCaPPMr9U48weeRRFhay7pYkbUAnu+h2X2b+CCAzvxkRLwO+FBFjgIlSk4WF5J5DR9i1b5yJqRnGhgfYu7PF9i1DNBq+7ko66mQz+CMr19/bYf8y4DLgeVU3ptUdnp5dDneAiakZdu0b5/D0bM2dSdpoThbwvw80IuIPImIYIDN/AlwMvLEbzelEs3Pzy+G+ZGJqhtm5+Zo6krRRrRnwmXlbZh4EngZ8KyI+GxEXA3OZee16njwinhwR10fE3RFxV0S8pEN996xmfx9jwwPH3DY2PECzv6+mjiRtVI97Hnxmvht4DvBx4A3AwYh432qnT67iw8ANmflc4DzgrtPoVcDIYJO9O1vLIb+0Bj8y2Ky5M0kbzckOsi7LzIyIB4EHgTlgGLg+Im7KzLev9jsR8STgQhZfFMjMWcCF4tPUaATbtwyx/8odzM7N0+zvY2Sw6QFWSSd43ICPiLcAVwAPA1cDf5yZj0VEAzgIrBrwwLOASeATEXEecAC4KjOnj3v+3cBugK1bt57qOHpKoxGMDp1RdxuSNrj1bFVwNvC6zHxVZn4uMx8DyMwF4JKT/F4/cAHwscx8ATANvOP4B2XmnsxsZWZrdHT0iY9AkrSq9azBvycz713jvpOtqU8AE5n5jfbP17MY+JKkLqhss7HMfBD4YURsb990EfDdqupJko61roOsp+HNwLUR0QS+x+KWB5KkLqg04DPzVqBVZQ1J0urcD16SCmXAS1KhDHhJKpQBL0mFMuAlqVAGvCQVyoCXpEIZ8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQvVX+eQR8QPgCDAPzGVmq8p6kqSjKg34tpdl5sNdqCNJWsElGkkqVNUBn8CNEXEgInav9oCI2B0R4xExPjk5WXE7ktQ7qg74HZl5AfBq4E0RceHxD8jMPZnZyszW6Ohoxe1IUu+oNOAz84H214eA/cCLqqwnSTqqsoCPiMGIGFr6HvgV4I6q6kmSjlXlWTRbgP0RsVTn05l5Q4X1JEkrVBbwmfk94Lyqnr9uCwvJ4elZZufmafb3MTLYpNGIutuSpGXdOA++OAsLyT2HjrBr3zgTUzOMDQ+wd2eL7VuGDHlJG4bnwZ+Cw9Ozy+EOMDE1w6594xyenq25M0k6yoA/BbNz88vhvmRiaobZufmaOpKkExnwp6DZ38fY8MAxt40ND9Ds76upI0k6kQF/CkYGm+zd2VoO+aU1+JHBZs2dSdJRHmQ9BY1GsH3LEPuv3OFZNJI2LAP+FDUawejQGXW3IUlrcolGkgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklSoygM+Ivoi4tsR8aWqa0mSjurGDP4q4K4u1JEkrVBpwEfEGPAa4Ooq60iSTlT1DP5DwNuBhbUeEBG7I2I8IsYnJycrbkeSekdlAR8RlwAPZeaBkz0uM/dkZiszW6Ojo1W1I0k9p8oZ/A7g0oj4AfAZ4OUR8akK60mSVqgs4DPznZk5lpnbgMuBr2Tm66uqJ0k6lufBS1Kh+rtRJDNvBm7uRi1J0iJn8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFcqAl6RCGfCSVCgDXpIKZcBLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJekQhnwklQoA16SCmXAS1KhunJN1iotLCSHp2eZnZun2d/HyGCTRiPqbkuSarepA35hIbnn0BF27RtnYmqGseEB9u5ssX3LkCEvqedt6iWaw9Ozy+EOMDE1w6594xyenq25M0mqX2UBHxFnRsQ3I+K2iLgzIv680zVm5+aXw33JxNQMs3PznS4lSZtOlTP4R4GXZ+Z5wPnAxRHx4k4WaPb3MTY8cMxtY8MDNPv7OllGkjalygI+F/1v+8efav/JTtYYGWyyd2drOeSX1uBHBpudLCNJm1KlB1kjog84APwc8HeZ+Y1OPn+jEWzfMsT+K3d4Fo0kHafSgM/MeeD8iHgysD8izs3MO1Y+JiJ2A7sBtm7d+oRrNBrB6NAZnWhXkorSlbNoMvO/gZuBi1e5b09mtjKzNTo62o12JKknVHkWzWh75k5EDACvAO6uqp4k6VhVLtGcA3yyvQ7fAD6bmV+qsJ4kaYXKAj4zbwdeUNXzS5JOblN/klWStDYDXpIKFZkd/ezRaYmISeDeU/z1s4GHO9jOZuCYy9dr4wXH/ET9bGauegrihgr40xER45nZqruPbnLM5eu18YJj7iSXaCSpUAa8JBWqpIDfU3cDNXDM5eu18YJj7phi1uAlSccqaQYvSVrBgJekQhUR8BHRFxHfjoie2OsmIp4cEddHxN0RcVdEvKTunqoWEW9rX/rxjoi4LiLOrLunTouIf4iIhyLijhW3PSUiboqIg+2vw3X22GlrjPlv2n+3b4+I/UubFpZitTGvuO+PIiIj4uxO1Coi4IGrgLvqbqKLPgzckJnPBc6j8LFHxDOAtwCtzDwX6AMur7erSlzDiVtqvwP4cmY+B/hy++eSXMOJY74JODcznw/8J/DObjdVsWtYZev0iPgZ4JXAfZ0qtOkDPiLGgNcAV9fdSzdExJOAC4GPA2TmbHu//dL1AwMR0Q+cBTxQcz8dl5n/Dvz4uJsvAz7Z/v6TwK91tamKrTbmzLwxM+faP34dGOt6YxVa4/8zwN8Cb6eDlzbd9AEPfIjF/ygLdTfSJc8CJoFPtJelro6IwbqbqlJm3g98kMWZzY+A/8nMG+vtqmu2ZOaPANpfn1pzP932RuBf626iahFxKXB/Zt7Wyefd1AEfEZcAD2Xmgbp76aJ+4ALgY5n5AmCa8t62H6O97nwZ8Ezg6cBgRLy+3q5UtYh4FzAHXFt3L1WKiLOAdwHv6fRzb+qAB3YAl0bED4DPAC+PiE/V21LlJoCJFRcwv57FwC/ZK4DvZ+ZkZj4GfAF4ac09dcuhiDgHoP31oZr76YqIuAK4BPjtLP/DOs9mcfJyWzvLxoBbIuJpp/vEmzrgM/OdmTmWmdtYPOj2lcwsemaXmQ8CP4yI7e2bLgK+W2NL3XAf8OKIOCsigsUxF31geYUvAle0v78C+Kcae+mKiLgY+BPg0sx8pO5+qpaZ38nMp2bmtnaWTQAXtP+tn5ZNHfA97M3AtRFxO3A+8L6a+6lU+93K9cAtwHdY/Htb3MfZI+I64GvA9oiYiIjfBd4PvDIiDrJ4hsX76+yx09YY80eAIeCmiLg1Iv6+1iY7bI0xV1Or/Hc/ktSbnMFLUqEMeEkqlAEvSYUy4CWpUAa8JBXKgJceR0ScHxFfa+9meXtE/GbdPUnr4WmS0uOIiJ8HMjMPRsTTgQPAL/TIJm/axJzBSytExAvbs/QzI2IwIu4Empl5ECAzH2Bxu4DRWhuV1sEZvHSciPgL4ExggMV9f/5qxX0vYnHb3udlZq/sYKpNyoCXjhMRTeBbwP8BL83M+fbt5wA3A1dk5tfr61BaH5dopBM9BfhpFvdDOROWL7TyL8C7DXdtFs7gpeNExBdZ3H76mcA5wB+yeNGJf87MD9XZm/RE9NfdgLSRRMROYC4zPx0RfcB/sLgV9YXASES8of3QN2TmrTW1Ka2LM3hJKpRr8JJUKANekgplwEtSoQx4SSqUAS9JhTLgJalQBrwkFer/ATWRBLLn6UMBAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARb0lEQVR4nO3dfYxld13H8fdnd126uy5h2Q7lYcEC4qI0iuRqhMb6UJtUrVRQExq1RUhXVESNohB8+MMnFBIlwYcUWktjXWMqVZSArWhsgrRhyuOWAg1q67S0O7QValu73c7XP+YumU5ndmZn7rln7v29X0lz7/3dO+f3Pe3up2d+53zvSVUhSWrHtr4LkCSNl8EvSY0x+CWpMQa/JDXG4Jekxhj8ktSYHV1tOMkVwAXA0ao6azj228CFwAJwFHh1Vd211rZOP/30OvPMM7sqVZKm0s033/ylqppZPp6uruNPcg7wv8BVS4L/yVX1leHzNwDfVFWvW2tbg8GgZmdnO6lTkqZVkpurarB8vLOlnqq6Abhv2dhXlrzcA9g9Jklj1tlSz2qS/C5wMfBl4HvGPb8ktW7sJ3er6i1V9WzgauD1q30uyaEks0lm5+fnx1egJE25Pq/q+SvgR1Z7s6ouq6pBVQ1mZp5wbkKStEFjDf4kL1jy8uXAZ8c5vySp28s5DwPfDZyeZA74LeAHkhxk8XLO24E1r+iRJI1WZ8FfVRetMHx5V/NJ0qgtLBT3PniMY8cfY+eO7ezfs5Nt29J3WZs29qt6JGkSLCwUn7vnAS69apa5+x/mwL5dvOviAQfP2Dvx4e9XNkjSCu598NhXQx9g7v6HufSqWe598FjPlW2ewS9JKzh2/LGvhv4Jc/c/zLHjj/VU0egY/JK0gp07tnNg367HjR3Yt4udO7b3VNHoGPyStIL9e3byrosHXw3/E2v8+/fs7LmyzfPkriStYNu2cPCMvVz7s2d7VY8ktWLbtjCz90l9lzFyLvVIUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mN6Sz4k1yR5GiSI0vG3pbks0k+leTaJE/pan5J0sq6POK/Ejh/2dj1wFlV9c3A54E3dzi/JGkFnQV/Vd0A3Lds7LqqOj58eSNwoKv5JUkr63ON/zXAB1Z7M8mhJLNJZufn58dYliRNt16CP8lbgOPA1at9pqouq6pBVQ1mZmbGV5wkTbmx34glySXABcC5VVXjnl+SWjfW4E9yPvBrwHdV1UPjnFuStKjLyzkPAx8BDiaZS/Ja4J3AXuD6JJ9I8uddzS9JWllnR/xVddEKw5d3NZ8kaX3s3JWkxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jgu77l7RZKjSY4sGfuxJLckWUgy6GpuSdLqujzivxI4f9nYEeCVwA0dzitJOokub7Z+Q5Izl43dCpCkq2klSWvYsmv8SQ4lmU0yOz8/33c5kjQ1tmzwV9VlVTWoqsHMzEzf5UjS1NiywS9J6obBL0mN6fJyzsPAR4CDSeaSvDbJK5LMAS8F3p/kn7qaX5K0si6v6rlolbeu7WpOSdLaXOqRpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYLu+5e0WSo0mOLBl7apLrk9w2fNzX1fySpJV1ecR/JXD+srE3AR+qqhcAHxq+liSNUWfBX1U3APctG74QeM/w+XuAH+5qfknSysa9xn9GVX0RYPj4tNU+mORQktkks/Pz82MrUJKm3ZY9uVtVl1XVoKoGMzMzfZcjSVNj3MF/T5JnAAwfj455fklq3riD/33AJcPnlwB/P+b5Jal5XV7OeRj4CHAwyVyS1wJvBc5Lchtw3vC1JGmMdnS14aq6aJW3zu1qTknS2rbsyV1JUjcMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpz0uBP8vQkTx8+n0nyyiQvGk9pkqQurBr8SX6axVsn3pjkZ4B/BC4A3ju8jeKGJfmFJEeS3JLkFzezLUnSqTnZrRdfD7wI2AXcDnx9Vd2dZB/wr8DlG5kwyVnApcC3A8eADyZ5f1XdtpHtSZJOzcmWeh6tqoeq6l7gC1V1N0BV3Q/UJub8RuDG4baPA/8GvGIT25MknYKTBf9Ckq8ZPv/BE4NJTlvj59ZyBDgnyf4ku4EfAJ69ie1Jkk7ByQL8lQBJXg88uGR8P/DLG52wqm4F/gC4Hvgg8Eng+PLPJTmUZDbJ7Pz8/EankyQts2rwV9UdVfUo8HTgo0n+Jsn5wF1V9c+bmbSqLq+ql1TVOcB9wBPW96vqsqoaVNVgZmZmM9NJ0kRZWCjmH3iEO+9/iPkHHmFhYTOr60+05pJNVf068AIWT+a+Grgtye8lef5GJ03ytOHjc1j8zeLwRrclSdNkYaH43D0P8Io//TBn/8G/8oo//TCfu+eBkYb/utbqq6qAu4f/HAf2Adck+cMNzvu3ST4D/APwc8MTxpLUvHsfPMalV80yd//DAMzd/zCXXjXLvQ8eG9kcJ7ucE4AkbwAuAb4EvBt4Y1U9mmQbi0s0v3qqk1bVd57qz0hSC44df+yroX/C3P0Pc+z4YyObY83gB04HXllVty8drKqFJBeMrBJJEjt3bOfAvl2PC/8D+3axc8f2kc2xnjX+31we+kveu3VklUiS2L9nJ++6eMCBfbuAxdB/18UD9u/ZObI51nPEL0kak23bwsEz9nLtz57NseOPsXPHdvbv2cm2bRnZHAa/JG0x27aFmb1P6m77nW1ZkrQlGfyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGuN39Uja0hYWinsfPNbZF5a1yOCXtGWduA3hiTtSnfiK4oNn7DX8N8GlHklb1jhuQ9iiXoI/yS8luSXJkSSHk5zWRx2StrZx3IawRWMP/iTPAt4ADKrqLGA78Kpx1yFp6ztxG8KlRn0bwhb1tdSzA9iVZAewG7irpzokbWHjuA1hi8Z+creq7kzyduAO4GHguqq6btx1SNr6xnEbwhb1sdSzD7gQeC7wTGBPkp9Y4XOHkswmmZ2fnx93mZK2iBO3IXzWvt3M7H2SoT8CfSz1fB/wn1U1X1WPAu8FXrb8Q1V1WVUNqmowMzMz9iIlaVr1cR3/HcB3JNnN4lLPucBsD3VIOgU2Uk2PPtb4b0pyDfAx4DjwceCycdchaf1spJouvVzVU1W/VVUvrKqzquonq+qRPuqQtD42Uk0XO3clrclGquli8Etak41U08Xgl7QmG6mmi9/OKWlNNlJNF4Nf0rqcaKTS5HOpR5Ia4xG/NGFspNJmGfzSBLGRSqPgUo80QWyk0igY/NIEsZFKo2DwSxPERiqNgsEvTRAbqTQKntyVJoiNVBoFg1+aMDZSabNc6pGkxnjEL22ATVSaZAa/dIpsotKkc6lHOkU2UWnSjT34kxxM8okl/3wlyS+Ouw5po2yi0qTr42brnwNeDJBkO3AncO2465A26kQT1dLwt4lKk6TvpZ5zgS9U1e091yGtm01UmnR9n9x9FXB4pTeSHAIOATznOc8ZZ03SSdlEpUmXqupn4mQncBfwoqq652SfHQwGNTs7O57CJGlKJLm5qgbLx/tc6vl+4GNrhb4kabT6DP6LWGWZR5LUnV7W+JPsBs4DfrqP+TU97KCVTl0vwV9VDwH7+5hb08MOWmlj+r6cU9owO2iljTH4NbHsoJU2xuDXxPI2hNLGGPyaWHbQShvTd+eutGF20EobY/BronkbQunUudQjSY3xiF8jYSOVNDkMfm2ajVTSZHGpR5tmI5U0WQx+bZqNVNJkMfi1aTZSSZPF4Nem2UglTRZP7mrTbKSSJovBr5GwkUqaHC71SFJjPOKfIjZRSVoPg39K2EQlab16WepJ8pQk1yT5bJJbk7y0jzqmiU1UktarryP+dwAfrKofTbIT2N1THVPDJipJ6zX2I/4kTwbOAS4HqKpjVfU/465j2thEJWm9+ljqeR4wD/xFko8neXeSPcs/lORQktkks/Pz8+OvcsLYRCVpvVJV450wGQA3AmdX1U1J3gF8pap+Y7WfGQwGNTs7O7YaJ5VX9UhaKsnNVTVYPt7HGv8cMFdVNw1fXwO8qYc6po5NVJLWY+xLPVV1N/DfSQ4Oh84FPjPuOiSpVX1d1fPzwNXDK3r+A/ipnurohEsukrayXoK/qj4BPGHdaRrYSCVpq/O7ekbMRipJW53BP2I2Ukna6gz+EbORStJWZ/CPmI1UkrY6v51zxLwblaStzuDvgI1UkrYyl3okqTEGvyQ1ZmqXeuyelaSVTWXw2z0rSaubyqUeu2claXVTGfx2z0rS6qYy+O2elaTVTWXw2z0rSaubypO7ds9K0uqmMvjB7llJWs1ULvVIklZn8EtSYwx+SWqMwS9JjTH4Jakxqaq+a1hTknng9g3++OnAl0ZYziRwn9vQ2j63tr+w+X3+uqqaWT44EcG/GUlmq2rQdx3j5D63obV9bm1/obt9dqlHkhpj8EtSY1oI/sv6LqAH7nMbWtvn1vYXOtrnqV/jlyQ9XgtH/JKkJaY++JNsT/LxJP/Ydy3jkOQpSa5J8tkktyZ5ad81dSnJLyW5JcmRJIeTnNZ3TV1IckWSo0mOLBl7apLrk9w2fNzXZ42jtMr+vm345/pTSa5N8pQ+axy1lfZ5yXu/kqSSnD6KuaY++IFfAG7tu4gxegfwwap6IfAtTPG+J3kW8AZgUFVnAduBV/VbVWeuBM5fNvYm4ENV9QLgQ8PX0+JKnri/1wNnVdU3A58H3jzuojp2JU/cZ5I8GzgPuGNUE0118Cc5APwg8O6+axmHJE8GzgEuB6iqY1X1P/1W1bkdwK4kO4DdwF0919OJqroBuG/Z8IXAe4bP3wP88FiL6tBK+1tV11XV8eHLG4EDYy+sQ6v8Nwb4I+BXgZGdkJ3q4Af+mMV/YQt9FzImzwPmgb8YLm+9O8mevovqSlXdCbydxSOhLwJfrqrr+q1qrM6oqi8CDB+f1nM94/Qa4AN9F9G1JC8H7qyqT45yu1Mb/EkuAI5W1c191zJGO4CXAH9WVd8KPMh0/fr/OMM17QuB5wLPBPYk+Yl+q1LXkrwFOA5c3XctXUqyG3gL8Juj3vbUBj9wNvDyJP8F/DXwvUn+st+SOjcHzFXVTcPX17D4P4Jp9X3Af1bVfFU9CrwXeFnPNY3TPUmeATB8PNpzPZ1LcglwAfDjNf3Xoj+fxYOaTw5z7ADwsSRP3+yGpzb4q+rNVXWgqs5k8YTfv1TVVB8NVtXdwH8nOTgcOhf4TI8lde0O4DuS7E4SFvd3ak9mr+B9wCXD55cAf99jLZ1Lcj7wa8DLq+qhvuvpWlV9uqqeVlVnDnNsDnjJ8O/5pkxt8Dfs54Grk3wKeDHwez3X05nhbzbXAB8DPs3in+ep7O5Mchj4CHAwyVyS1wJvBc5LchuLV328tc8aR2mV/X0nsBe4Psknkvx5r0WO2Cr73M1c0//bkiRpKY/4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLm5Dk65LcPLy88JYkr+u7JmktXs4pbUKSnSz+PXokydcCR4CXVdVUflmcpoNH/NI6Jfm24XfBn5ZkT5JbgG+oqkeGH3kS/p3SBPCIXzoFSX4HOA3YxeL3Iv3+8PvS3w98PfDGqvqTPmuU1mLwS6dguLTzUeD/WFzSeWzJe88E/g74oaq6p6cSpTX5a6l0ap4KfC2L3xnzuNs8Dtf1bwG+s4e6pHXziF86BUnex+LXfD8XeAaLX4x2b1U9PLw/wE3Aj1TVp3ssUzqpHX0XIE2KJBcDx6vqr5JsB/4deBHwtiQFBHi7oa+tziN+SWqMa/yS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxvw/C0s07abPF+MAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARv0lEQVR4nO3de4xcZ33G8e+zXjaxjWmMszEXEwwVuJSIUhgQEAGCEBQqRIC2ErSQcFEsCJeCVG5CReoNUaDqRUhFDkmTCAilIS5IlDYpqERVua0pF0MIEaUJSyBZjIuC47JZ769/7Nhylp34NjNn95zv55+ZOXP2vL9Xth+ffc973pOqQpLUHRNNFyBJGi+DX5I6xuCXpI4x+CWpYwx+SeqYyaYLOB5nnnlmbd++vekyJGlN2bNnz0+qanr59jUR/Nu3b2dmZqbpMiRpTUly60rbHeqRpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWPWxHROSeqSxcVi34F55hcOMTW5ji0bp5iYyNCOb/BL0iqyuFjcfMddXHL1DLP7D7Jt83ouu6jHjq2bhhb+DvVI0iqy78D8kdAHmN1/kEuunmHfgfmhtWHwS9IqMr9w6EjoHza7/yDzC4eG1obBL0mryNTkOrZtXn+vbds2r2dqct3Q2jD4JWkV2bJxissu6h0J/8Nj/Fs2Tg2tDS/uStIqMjERdmzdxO5Lz3VWjyR1xcREmN502uiOP7IjS5JWJYNfkjrG4JekjjH4JaljDH5J6piRBX+SK5LcmWTvUdvel+Q7Sb6RZHeSM0bVviRpZaM8478SuGDZthuAc6rqccB3gXeMsH1J0gpGFvxVdSPw02Xbrq+qhf7HLwLbRtW+JGllTY7xvwr4zKAvk+xMMpNkZm5uboxlSVK7NRL8Sd4JLAAfGbRPVe2qql5V9aanp8dXnCS13NiXbEhyMfB84LyqqnG3L0ldN9bgT3IB8DbgmVV19zjbliQtGeV0zmuALwA7kswmeTXwAWATcEOSryX54KjalyStbGRn/FX10hU2Xz6q9iRJx8c7dyWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqmFE+c/eKJHcm2XvUtt9N8q0ki0l6o2pbkjTYKM/4rwQuWLZtL/Bi4MYRtitJug+jfNj6jUm2L9t2E0CSUTUrSTqGVTvGn2RnkpkkM3Nzc02XI0mtsWqDv6p2VVWvqnrT09NNlyNJrbFqg1+SNBoGvyR1zCinc14DfAHYkWQ2yauTvCjJLPBU4NNJ/nVU7UuSVjbKWT0vHfDV7lG1KUk6Nod6JKljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeqYUT5z94okdybZe9S2Bya5Ickt/dfNo2pfkrSyUZ7xXwlcsGzb24HPVtWjgM/2P0uSxmhkwV9VNwI/Xbb5QuCq/vurgBeOqn1J0srGPca/tap+BNB/PWvM7UtS563ai7tJdiaZSTIzNzfXdDmS1BrjDv47kjwYoP9656Adq2pXVfWqqjc9PT22AiWp7cYd/J8CLu6/vxj45Jjbl6TOG+V0zmuALwA7kswmeTXwHuD8JLcA5/c/S5LGaHJUB66qlw746rxRtSlJOrZVe3FXkjQaBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHdNI8Cf5gyR7k3wryZuaqEGSumrswZ/kHOAS4MnAbwDPT/KocdchSV3VxBn/Y4AvVtXdVbUAfB54UQN1SFInnVDwJ3n3ENrcCzwjyZYkG4DfAh62Qls7k8wkmZmbmxtCs5IkgMlBXyT52+WbgJcnuT9AVb3xZBqsqpuS/AVwA/Bz4OvAwgr77QJ2AfR6vTrRdhYXi30H5plfOMTU5Dq2bJxiYiInU7IktcrA4AdeDPw7cD1LoQ/wEmDPqTZaVZcDl8OR3yJmT/WYR1tcLG6+4y4uuXqG2f0H2bZ5PZdd1GPH1k2Gv6TOu6+hnscAPwEuAP6tqq4C7qqqq/rvT1qSs/qvZ7P0H8w1p3K85fYdmD8S+gCz+w9yydUz7DswP8xmJGlNGnjGX1V3AW9K8gTgw0k+zfAuBn8iyRbgHuB1VbV/SMcFYH7h0JHQP2x2/0HmFw4NsxlJWpPua6jnsKexdFb+e8B/DKPRqnr6MI4zyNTkOrZtXn+v8N+2eT1Tk+tG2awkrQnHcwb/IODLwDNZOvNf9YPkWzZOcdlFPbZtXg9wZIx/y8aphiuTpOal6tgTZvph/1zglUAP+DhweVV9b7TlLen1ejUzM3NCP+OsHkldl2RPVfWWbz+eoR6qqpL8GPgxS1MvNwPXJrmhqt463FKHY2IiTG86rekyJGnVOWbwJ3kjcDFLM3w+BLylqu5JMgHcAqzK4Jckrex4zvjPBF5cVbcevbGqFpM8fzRlSZJG5ZjBX1Xvuo/vbhpuOcPjGL8krey4xvjXGu/claTBWvkgFu/claTBWhn83rkrSYO1MvgP37l7NO/claQlrQx+79yVpMFaeXF3YiLs2LqJ3Zee66weSVqmlcEP3rkrSYO0cqhHkjSYwS9JHWPwS1LHGPyS1DEGvyR1TCPBn+TNSb6VZG+Sa5Kc3kQdktRFYw/+JA8F3gj0quocYB3wknHXIUld1dQ8/klgfZJ7gA3A7cNuwGWZJWllYw/+qvphkvcDtwEHgeur6vrl+yXZCewEOPvss0+oDZdllqTBmhjq2QxcCDwCeAiwMcnLlu9XVbuqqldVvenp6RNqw2WZJWmwJi7uPgf4flXNVdU9wHXA04bZgMsyS9JgTQT/bcBTkmxIEuA8YKiPcHRZZkkabOzBX1VfAq4Fvgp8s1/DrmG24bLMkjRYqqrpGo6p1+vVzMzMCf3MwsIid/78FywcWmRy3QRn3f80Jie9X01SdyTZU1W95dtbuSzz4mJxy9zPndUjSSto5Smws3okabBWBr+zeiRpsFYGv7N6JGmwVga/s3okabBWXtz1YeuSNFgrgx982LokDdLKoR5J0mAGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHVMa5dsWFws9h2Yd60eSVpm7MGfZAfwD0dteiTwrqr662G1sbhY3HzHXT6BS5JW0MTD1m+uqsdX1eOBJwJ3A7uH2YZP4JKkwZoe4z8P+F5V3TrMg/oELkkarOkx/pcA16z0RZKdwE6As88++4QOOjW5juf++ln89hMfxhnr78f/HryHT+z5gU/gkiQgVdVMw8kUcDvw2Kq647727fV6NTMzc9zHXlhY5Dt33MVrPrznyBj/B1/2RH5t6yYmJ5v+JUeSxiPJnqrqLd/eZAo+D/jqsUL/ZOw/eM+R0IelYZ7XfHgP+w/eM+ymJGnNaTL4X8qAYZ5T5Ri/JA3WSPAn2QCcD1w3iuNPTa478qD1w7ZtXu8YvyTRUPBX1d1VtaWqfjaK42/ZOMVlF/WOhP/hefxbNk6NojlJWlOantUzEhMTYcfWTey+9Fzv3JWkZVoZ/LAU/tObTmu6DEladVob/K7VI0kra2Xwu1aPJA3WyruZXKtHkgZrZfA7j1+SBmtl8DuPX5IGa2XwO49fkgZr5cVd5/FL0mCtDH5wHr8kDdLKoR5J0mAGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUsc09czdM5Jcm+Q7SW5K8tQm6pCkLmrqzt2/Af6lqn4nyRSwoaE6JKlzxh78SR4APAN4BUBVzQMulC9JY9LEUM8jgTng75P8V5IPJdm4fKckO5PMJJmZm5sbf5WS1FJNBP8k8ATg76rqN4EDwNuX71RVu6qqV1W96enpcdcoSa3VRPDPArNV9aX+52tZ+o9AkjQGYw/+qvox8IMkO/qbzgO+Pe46JKmrmprV8wbgI/0ZPf8NvHLYDSwuFvsOzPsgFklappHgr6qvAb1RHX9xsbj5jru45OoZZvcfPPLoxR1bNxn+kjqvlXfu7jswfyT0AWb3H+SSq2fYd8BZo5LUyuCfXzh0JPQPm91/kPmFQw1VJEmrRyuDf2pyHds2r7/Xtm2b1zM1ua6hiiRp9Wjlw9a3bJzi6lc9mVv33c2GqXXcPX+Ih2/ZwJaNU02XJkmNa2XwA/xiYZE/+uTee13clSS1dKjHi7uSNFgrg9+Lu5I0WCuD34u7kjRYK4N/y8YpLruodyT8D4/xe3FXklp6cXdiIuzYuondl57rkg2StEwrgx+Wwn9602lNlyFJq04rh3okSYO19ozf1TklaWWtDH5X55SkwVo51OMNXJI0WCuD3xu4JGmwVga/N3BJ0mCtDH5v4JKkwRq5uJvkf4C7gEPAQlUNdelMb+CSpMGanNXzrKr6yagO7g1ckrSyVg71SJIGayr4C7g+yZ4kO1faIcnOJDNJZubm5sZcniS1V1PBf25VPQF4HvC6JM9YvkNV7aqqXlX1pqenx1+hJLVUI8FfVbf3X+8EdgNPbqIOSeqisQd/ko1JNh1+DzwX2DvuOiSpq1JV420weSRLZ/mwNKvoo1X158f4mTng1pNs8kxgZLOHVoE298++rU1t7husrf49vKp+aax87ME/bklmhn2fwGrS5v7Zt7WpzX2DdvTP6ZyS1DEGvyR1TBeCf1fTBYxYm/tn39amNvcNWtC/1o/xS5LurQtn/JKkoxj8ktQxrQ7+JG9O8q0ke5Nck+T0pms6WUmuSHJnkr1HbXtgkhuS3NJ/3dxkjadiQP/el+Q7Sb6RZHeSM5qs8WSt1LejvvvDJJXkzCZqO1WD+pbkDUlu7v/7e29T9Z2KAX8nH5/ki0m+1l9LbE2uOtDa4E/yUOCNQK+qzgHWAS9ptqpTciVwwbJtbwc+W1WPAj7b/7xWXckv9+8G4JyqehzwXeAd4y5qSK7kl/tGkocB5wO3jbugIbqSZX1L8izgQuBxVfVY4P0N1DUMV/LLf27vBf64qh4PvKv/ec1pbfD3TQLrk0wCG4DbG67npFXVjcBPl22+ELiq//4q4IVjLWqIVupfVV1fVQv9j18Eto29sCEY8GcH8FfAW1larXZNGtC31wLvqapf9Pe5c+yFDcGAvhXwgP77X2GNZkprg7+qfsjSmcZtwI+An1XV9c1WNXRbq+pHAP3XsxquZ5ReBXym6SKGJckLgB9W1debrmUEHg08PcmXknw+yZOaLmiI3gS8L8kPWMqXNflbaGuDvz/efSHwCOAhwMYkL2u2Kp2MJO8EFoCPNF3LMCTZALyTpaGCNpoENgNPAd4CfDxJW557+lrgzVX1MODNwOUN13NSWhv8wHOA71fVXFXdA1wHPK3hmobtjiQPBui/rslfqe9LkouB5wO/X+256eRXWToh+Xr/+dPbgK8meVCjVQ3PLHBdLfkysMjSwmZtcDFLWQLwj6zRJeXbHPy3AU9JsqF/tnEecFPDNQ3bp1j6i0j/9ZMN1jJ0SS4A3ga8oKrubrqeYamqb1bVWVW1vaq2sxSUT6iqHzdc2rD8E/BsgCSPBqZYO6tZHsvtwDP7758N3NJgLSettcFfVV8CrgW+CnyTpb6u2Vutk1wDfAHYkWQ2yauB9wDnJ7mFpdkh72myxlMxoH8fADYBN/Snz32w0SJP0oC+tcKAvl0BPLI/DfJjwMVr8be1AX27BPjLJF8H3g2s+OjY1c4lGySpY1p7xi9JWpnBL0kdY/BLUscY/JLUMQa/JHWMwS8NQZIHJPlhkg80XYt0LAa/NBx/Cny+6SKk42HwS8cpyZP6zwY4PcnG/lrz5yR5IrAVaNsigGqpyaYLkNaKqvpKkk8BfwasBz4MfBv4HPBylpYFkVY9g186MX8CfAX4P5Ye9HMp8M9V9YP2LECptjP4pRPzQOD+wP2A04GnsrT2/KX97VNJfl5Va/lpaGo51+qRTkB/qOdjLC2r/OCqev1R372CpUd9vn7Aj0urgmf80nFKchGwUFUfTbIO+M8kz66qzzVdm3QiPOOXpI5xOqckdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LH/D/X08OdRTWKzgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# call plt.figure to create a new active plot object. otherweise, all points are drawn into the same plot\n",
"for i in range(1, 5):\n",
" plt.figure()\n",
" sns.scatterplot(f'x{i}', f'y{i}', data=df)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}